ETF_Suite_Portal/docs/dividend_trend_analysis.md

4.0 KiB

Dividend Trend Analysis Framework

1. Theoretical Foundations

1.1 Gordon Growth Model

  • Basic formula: P = D/(r-g)
  • Where:
    • P = Price
    • D = Dividend
    • r = Required rate of return
    • g = Growth rate
  • Application: Use to validate dividend sustainability

1.2 Dividend Discount Model (DDM)

  • Multi-stage DDM for ETFs with varying growth phases
  • Terminal value calculation using industry averages
  • Sensitivity analysis for different growth scenarios

1.3 Modern Portfolio Theory (MPT)

  • Dividend yield as a risk factor
  • Correlation with market returns
  • Beta calculation specific to dividend-paying securities

2. Empirical Analysis Framework

2.1 Historical Data Analysis

  • Rolling 12-month dividend growth rates
  • Year-over-year comparisons
  • Seasonality analysis
  • Maximum drawdown during dividend cuts

2.2 Statistical Measures

  • Mean reversion analysis
  • Volatility clustering
  • Autocorrelation of dividend payments
  • Skewness and kurtosis of dividend distributions

2.3 Machine Learning Components

  • Time series forecasting (ARIMA/SARIMA)
  • Random Forest for feature importance
  • Gradient Boosting for non-linear relationships
  • Clustering for similar ETF behavior

3. Risk Assessment Framework

3.1 Quantitative Risk Metrics

  • Dividend Coverage Ratio
  • Payout Ratio
  • Free Cash Flow to Dividend Ratio
  • Interest Coverage Ratio

3.2 Market Risk Factors

  • Interest Rate Sensitivity
  • Credit Spread Impact
  • Market Volatility Correlation
  • Sector-Specific Risks

3.3 Structural Risk Analysis

  • ETF Structure (Physical vs Synthetic)
  • Tracking Error
  • Liquidity Risk
  • Counterparty Risk

4. Implementation Guidelines

4.1 Data Requirements

  • Minimum 5 years of historical data
  • Monthly dividend payments
  • NAV/Price history
  • Trading volume
  • AUM (Assets Under Management)

4.2 Calculation Methodology

def calculate_dividend_trend(etf_data: Dict) -> Dict:
    """
    Calculate comprehensive dividend trend analysis
    
    Returns:
    {
        'gordon_growth': float,  # Growth rate from Gordon model
        'ddm_value': float,      # Value from DDM
        'empirical_metrics': {
            'rolling_growth': float,
            'volatility': float,
            'autocorrelation': float
        },
        'risk_metrics': {
            'coverage_ratio': float,
            'payout_ratio': float,
            'market_correlation': float
        },
        'ml_predictions': {
            'next_year_growth': float,
            'confidence_interval': Tuple[float, float]
        }
    }
    """
    pass

4.3 Validation Framework

  • Backtesting against historical data
  • Cross-validation with similar ETFs
  • Stress testing under market conditions
  • Sensitivity analysis of parameters

5. Practical Considerations

5.1 ETF-Specific Adjustments

  • New ETFs (< 2 years): Use peer comparison
  • Established ETFs: Focus on historical patterns
  • Sector ETFs: Consider industry cycles
  • Global ETFs: Account for currency effects

5.2 Market Conditions

  • Interest rate environment
  • Economic cycle position
  • Sector rotation impact
  • Market sentiment indicators

5.3 Reporting Standards

  • Clear confidence intervals
  • Multiple scenario analysis
  • Risk factor decomposition
  • Historical comparison benchmarks

6. Continuous Improvement

6.1 Performance Monitoring

  • Track prediction accuracy
  • Monitor model drift
  • Update parameters quarterly
  • Validate against new data

6.2 Model Updates

  • Incorporate new market data
  • Adjust for structural changes
  • Update peer comparisons
  • Refine risk parameters

7. Implementation Roadmap

  1. Phase 1: Basic Implementation

    • Gordon Growth Model
    • Historical trend analysis
    • Basic risk metrics
  2. Phase 2: Advanced Features

    • Machine Learning components
    • Market risk factors
    • Structural analysis
  3. Phase 3: Optimization

    • Parameter tuning
    • Performance validation
    • Reporting improvements
  4. Phase 4: Maintenance

    • Regular updates
    • Performance monitoring
    • Model refinement